skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Ruanqianqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computational notebooks are intended to prioritize the needs of scientists, but little is known about how scientists interact with notebooks, what requirements drive scientists’ software development processes, or what tactics scientists use to meet their requirements. We conducted an observational study of 20 scientists using Jupyter notebooks for their day-to-day tasks, finding that scientists prioritize different quality attributes depending on their goals. A qualitative analysis of their usage shows (1) a collection of goals scientists pursue with Jupyter notebooks, (2) a set of quality attributes that scientists value when they write software, and (3) tactics that scientists leverage to promote quality. In addition, we identify ways scientists incorporated AI tools into their notebook work. From our observations, we derive design recommendations for improving computational notebooks and future programming systems for scientists. Key opportunities pertain to helping scientists create and manage state, dependencies, and abstractions in their software, enabling more effective reuse of clearly-defined components. 
    more » « less
    Free, publicly-accessible full text available April 27, 2026
  2. Free, publicly-accessible full text available April 26, 2026
  3. Novice programmers often struggle with code understanding and debugging. Live Programming environments visualize the runtime values of a program each time it is modified to provide immediate feedback, which help with tracing the program execution. This paper presents the use of a Live Programming tool in a CS1 course to better understand the impact of Live Programming on novices’ learning metrics and their perceptions of the tool. We conducted a within-subjects study at a large public university in a CS1 course in Python (N=237) where students completed tasks in a lab setting, in some cases with a Live Programming environment, and in some cases without. Through post-lab surveys and open-ended feedback, we measured how well students understood the material and how students perceived the programming environment. To understand the impact of Live Programming, we compared the collected data for students who used Live Programming with the data for students who did not. We found that while learning outcomes were the same regardless of whether Live Programming was used or not, students who used the Live Programming tool completed some code tracing tasks faster. Furthermore, students liked the Live Programming environment more, and rated it as more helpful for their learning. 
    more » « less